<<234567>>
21.

A pack contains n card numbered from 1 to n . Two consecutive numbered card are removed from the pack and the sum of the numbers on the remaining cards is 1224. If the smaller of the numbers on the removed cards is k, then k-20 is equal to 


A) 5

B) 4

C) 3

D) 2



22.

Of the three independent events  $E_{1},E_{2} and E_{3}$  , the probability that only $E_{1}$ occurs is $\alpha$ , only $E_{2}$ occurs is β   and only $E_{3}$ occurs is $\gamma$ .Let  the probability p that none  of $E_{1}$ , $E_{2}$ or $E_{3}$ occurs satisfy the equations   $(\alpha-2\beta),p=\alpha\beta$ and   $ (\beta-3\gamma)$   $ p=2\beta\gamma$  .All the given probabilities are assumed to lie in the interval (0,1)

 Then, probability of occurrence of E1/ probability of occurrence  of Eis equal to


A) 5

B) 4

C) 2

D) 6



23.

Consider the set of eight vectors  $V= [a\hat{i}+b\hat{j}+c \hat{k}:a,b,c\in\left\{-1,1\right\}] $ .Three non-coplannar vectors can be chosen from  V in 2p ways. The , p is


A) 4

B) 5

C) 3

D) 2



24.

The coefficient of three consecutive terms  of  (1+x)n+5 are in the ratio 5:10:14 , then , n is equal to


A) 5

B) 4

C) 6

D) 3



25.

A vertical line passing through the point (h,o) intersects the ellipse   $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$  at the points P and Q .Let the tangents to the ellipse at P and Q meet at the point R.If   $\triangle(h)$  = area of the $\triangle$  PQR , $\triangle_{1}= max \triangle(h)$ .   $\triangle_{2}= min_{1/2\leq h\leq1} \triangle(h)^{1/2\leq h\leq 1}$  , then 

$\frac{8}{\sqrt{5}}\triangle_{1}-8\triangle_{2}$ is equal to 


A) 9

B) 4

C) 8

D) 5



<<234567>>